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Abstract

Cirrhotic ascites develops when portal hypertension and ar-
terial under-filling chronically activate neuro-hormonal path-
ways that drive renal sodium-water retention. Augmented
proximal tubular sodium reabsorption, predominantly medi-
ated by the apical sodium/hydrogen exchanger 3 (NHE3),
plays a fundamental role in this process. Given the spatial
coupling of NHE3 and the sodium-glucose cotransporter 2
(SGLT2), selective SGLT2 inhibition reduces NHE3 activity via
functional suppression within the apical microdomain. The
increased sodium chloride delivery to the macula densa aug-
ments tubuloglomerular feedback and modulates the renin-
angiotensin-aldosterone system. Early clinical investigations,
ranging from case reports and retrospective analyses to pilot
randomized trials, indicated potential benefits in controlling
ascites and reducing decompensation events. However, their
limited sample size, heterogeneous endpoints, and predomi-
nantly observational design constrain the generalizability
of the findings. This review concentrates on the molecular
mechanisms and emerging clinical evidence supporting the
therapeutic potential of SGLT2 inhibitors in the management
of cirrhotic ascites.
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Introduction

In cirrhosis, portal hypertension and splanchnic arterial
vasodilation chronically activate neurohumoral systems, in-
cluding the renin-angiotensin—-aldosterone system (RAAS),
the sympathetic nervous system, and arginine vasopressin.
Neurohormonal activation drives augmented tubular sodium
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reabsorption, and the proximal tubule acts as a dominant
effector.! Augmented proximal tubular sodium reabsorption
not only promotes ascites formation but also reduces the
luminal sodium gradient available to distal nephron chan-
nels, thereby diminishing the effectiveness of diuretics, a
phenomenon commonly referred to as diuretic resistance.?
Clinically, the development of ascites marks a notable tran-
sition from compensated to decompensated cirrhosis. Each
year, approximately 5-10% of patients with compensated
cirrhosis progress to ascites.3 Once ascites develops, the
five-year mortality increases to about 44%.4 Outcomes are
even worse in patients with refractory ascites, in whom early
referral for liver transplantation should be considered.>

Mechanistically, the sodium/hydrogen exchanger 3
(NHE3) is the principal mediator of proximal tubular sodium
reabsorption.6 The spatial colocalization of NHE3 and the
sodium-glucose cotransporter 2 (SGLT2) in the same api-
cal microdomain provides a mechanistic rationale whereby
pharmacologic inhibition of SGLT2 may concurrently reduce
NHE3 activity, thereby attenuating excessive proximal sodi-
um reabsorption. These insights support the development of
proximal tubule-targeted therapeutic strategies.

This review integrates the current understanding of cirrho-
sis pathophysiology with proximal tubular mechanisms, high-
lights their contributions to ascites formation and diuretic re-
sistance, and discusses the mechanistic basis and emerging
clinical evidence supporting the use of SGLT2 inhibitors.

Disrupted sodium-water homeostasis: the core
driver of ascites and the limitation of conventional
diuretics

Under normal physiological conditions, the proximal tubule
reabsorbs approximately 60% of filtered sodium, primar-
ily via the NHE3, while the SGLT2 accounts for about 5%
through 1:1 sodium-glucose coupling.” In cirrhosis models or
in states of reduced effective arterial volume, both transport-
ers in the proximal tubule are upregulated, thereby reducing
sodium delivery to the distal nephron.8 In the compensated
stage, increased cardiac output partially counteracts splanch-
nic vasodilation, and neurohumoral activation remains mild.
Once decompensation occurs, cardiac output declines, and
sustained activation of the RAAS together with arginine vaso-
pressin can markedly enhance proximal sodium-chloride re-
absorption.®10 In carbon tetrachloride (CCl,)-induced ascitic
rats, proximal NHE3 expression levels and brush-border lo-
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calization increase by 40-60%, exhibiting an inverse correla-
tion with urinary sodium excretion.! Clinically, patients with
ascites demonstrate greater fractional proximal sodium re-
absorption despite preserved eGFR, resulting in a diminished
natriuretic response to furosemide compared with controls.
After sodium chloride (NaCl) infusion, proximal reabsorption
remains unchanged in decompensated cirrhosis, whereas it
decreases by approximately 15% in healthy subjects.!2 Thus,
upregulation of proximal tubular Na* transport underlies cir-
rhotic Na* retention and contributes to the limited efficacy of
standard diuretics; however, direct evidence of NHE3 altera-
tions in cirrhotic patients remains limited.

First-line diuretic therapy for ascites typically includes
spironolactone, either alone or in combination with a loop
diuretic.3 Loop diuretics inhibit Na*-K*-2Cl~ cotransporter 2
(NKCC2) in the thick ascending limb, thereby increasing distal
NaCl delivery and promoting natriuresis. However, simultane-
ous inhibition of NKCC2 at the macula densa (MD) reduces
NaCl sensing, stimulates juxtaglomerular renin release, and
further amplifies the already activated RAAS.13 The ensuing
angiotensin II/aldosterone signaling upregulates sodium-
chloride cotransporter (NCC) and epithelial sodium channel
(ENaC), increases Na* reabsorption, and induces the “braking
phenomenon” during prolonged therapy, whereby the natriu-
retic response diminishes despite dose escalation.14:15

Molecular basis of SGLT2-mediated natriuresis

Heart failure and decompensated cirrhosis share a key patho-
physiological feature, namely effective arterial hypovolemia.
A reduction in cardiac output or systemic vascular resistance
lowers arterial blood volume, leading to chronic activation
of the sympathetic nervous system and the RAAS, which in
turn enhances renal sodium reabsorption. The resulting fluid
retention manifests as pulmonary or peripheral edema in
heart failure, whereas it predominantly leads to ascites in
cirrhosis.16 SGLT2 inhibitors improve cardiorenal outcomes in
heart failure and are incorporated into the four foundation-
al therapies for heart failure with reduced ejection fraction,
comprising an ARNI (or ACE inhibitor/ARB), a B-blocker, a
mineralocorticoid receptor antagonist, and an SGLT2 inhibi-
tor. They have also been explored for fluid management in
cirrhotic ascites.1”

SGLT2 is highly expressed on the brush border of the
proximal tubule and, as a Na*-dependent glucose transport-
er, mediates reabsorption of filtered glucose. It comprises 14
transmembrane helices arranged into a “rocking bundle” and
a “stationary scaffold,” functioning in concert with its chap-
erone protein MAP17.18 Because Na+ reabsorption via SGLT2
is strictly stoichiometrically coupled to glucose transport,
even RAAS-induced upregulation of SGLT2 increases total
renal Na* reabsorption by only 3-5%.1° Therefore, selective
SGLT2 blockade alone would be expected to exert only a lim-
ited natriuretic effect.

NHE3, located on the luminal membrane of the proximal
tubule, mediates Na*/H* exchange. NHE3 and the SGLT2-
MAP17 complex are organized and stabilized by the PDZ
domain-containing protein PDZK1, forming a functional
scaffold that coordinates sodium and glucose transport.20.21
Functional studies demonstrate that SGLT2 inhibition reduces
proximal tubular sodium reabsorption in part by suppressing
NHE3 activity, thereby amplifying natriuresis beyond what
would be expected from direct blockade of SGLT2 alone.?2 In
non-diabetic rats with post-MI heart failure, in vivo microper-
fusion showed that the SGLT2 inhibitor empagliflozin directly
inhibited proximal NHE3 activity while preserving GFR and
restoring euvolemia (Fig. 1).23
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However, the precise molecular events governing this
SGLT2-NHE3 interplay remain under investigation. While in-
hibitory phosphorylation of NHE3 was initially proposed as a
primary pathway,2? recent data indicate a more complex pic-
ture. For instance, a study in healthy volunteers showed that
a single dose of empagliflozin increased fractional sodium
excretion without altering NHE3 phosphorylation or abun-
dance in urinary exfoliated tubular cells.2* This suggests that
the functional shift in proximal Na* handling does not rely
solely on phosphorylation. Furthermore, downstream trans-
porter adaptation significantly shapes the phenotype during
prolonged use. In normotensive rats, empagliflozin inhibited
proximal NHE3 yet upregulated expression and phosphoryla-
tion of distal NCC; in hypertensive rats, NHE3 inhibition oc-
curred without NCC upregulation.?> These findings support
a network view in which distal compensation can partially
offset proximal NHE3 inhibition under some backgrounds.
Pair-feeding/drinking experiments showed that SGLT2 inhi-
bition maintained a small but sustained increase in urinary
sodium and water, producing a mild negative fluid balance
that revealed an intrinsic natriuretic tone.2® In conclusion,
current data do not support a universal increase in NHE3
phosphorylation; rather, this mechanism appears to be con-
text-dependent and warrants further exploration, specifically
within the cirrhotic environment.

Taken together, these findings indicate that inhibition of
proximal tubular NHE3 is the dominant driver of SGLT2 inhibi-
tor-induced natriuresis, and that the resulting increase in dis-
tal sodium delivery far exceeds the small amount of sodium
that is directly cotransported with glucose by SGLT?2 itself. In
humans, a lithium clearance study demonstrated that SGLT2
inhibition diverts more than 7% of the glomerular filtrate Na*
load to the distal nephron, markedly exceeding the trans-
porter’s theoretical 3-5% contribution.%27 In line with these
observations, clinical studies in heart failure have shown that
natriuretic and glycosuric responses are not tightly positively
correlated and may even be inversely related.2829

Modulation of the SGLT2i-neurohumoral axis

By inhibiting proximal tubular sodium-glucose reabsorption,
SGLT2 inhibitors increase NaCl delivery to the thick ascend-
ing limb, enhancing the ionic load sensed by the MD.30 The
classical model attributes the activation of tubuloglomerular
feedback (TGF) to an elevation in luminal NaCl concentra-
tion.31.:32

Experimental evidence indicates that chloride, rather than
sodium, is the principal trigger of the TGF response. TGF is
abolished when the loop of Henle is perfused with an iso-
osmotic, chloride-free solution,33 whereas replacement of lu-
minal sodium with N-methyl-D-glutamine in the presence of
chloride preserves TGF activation.34

SGLT2 inhibition also suppresses NHE3 activity, raising
luminal bicarbonate concentrations in tubular fluid,3> which
may lead to a disproportionate elevation in urinary Na* rela-
tive to CI=. When the increase in distal tubular Cl~ is mod-
est, the MD continues to sense a “low CI~" state, keeping
TGF suppressed. Future studies should clarify how urinary
chloride dynamics influence RAAS activity following SGLT2
inhibition.

Theoretically, increased chloride delivery to the MD can
enhance TGF and suppress RAAS activity; however, clini-
cal findings are more complex. Osmotic diuresis and mod-
est natriuresis transiently reduce plasma volume, eliciting a
short-lived increase in plasma renin activity, whereas aldos-
terone levels exhibit minimal or no change. Both parameters
generally return to baseline with continued therapy.36:37 In
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Fig. 1. Molecular mechanisms for the SGLT2 inhibitor-mediated reduction in proximal tubular sodium reabsorption. SGLT2, sodium glucose cotransporter
2; NHE3, sodium hydrogen exchanger 3; MAP17, membrane associated protein of 17 kDa; S1/S2, S1 and S2 segments of the proximal tubule; Na+, sodium ion; H+,

hydrogen ion.

randomized trials of SGLT2 inhibitors in heart failure, a de-
cline in eGFR of 3-5 mL/min/1.73 m2 is mainly observed dur-
ing the first weeks, while values generally return to baseline
by 12 weeks and subsequently decline at a slower rate than
in control subjects.3® Importantly, these heart failure-based
trials have not demonstrated an increased incidence of or-
thostatic hypotension despite a modest 4-5 mm Hg reduc-
tion in systolic blood pressure.39-41

It is also necessary to take into account the complex ef-
fects of SGLT2 inhibition on neurohumoral regulation. For
instance, in salt-loaded Dahl salt-sensitive rats, the SGLT2
inhibitor dapagliflozin blunted salt-induced hypertension and
enhanced natriuresis without significantly altering circulating
or intrarenal RAAS components.*? In this low-renin model,
the drug primarily improved tubular sodium handling in a
RAAS-independent manner. Similarly, in hypertensive BPH/2]
mice, dapagliflozin lowered blood pressure in association with
sympathoinhibition by reducing renal tyrosine hydroxylase
and norepinephrine levels, suggesting a RAAS-independent
neurohumoral modulation.43 Collectively, these studies il-
lustrate that SGLT2 inhibitors do not universally modulate
neurohumoral status via RAAS alone; rather, their effects are
modulated by background renin status, salt intake, and sym-
pathetic tone. Future studies in cirrhosis should therefore
track these neurohumoral markers dynamically to determine
which pathway predominates in the setting of advanced liver
disease.

Effects of SGLT2 inhibitors on compensatory sodium
reabsorption and sodium redistribution

Inhibition of proximal tubular sodium reabsorption by SGLT2
inhibitors is accompanied by compensatory adaptations in
downstream nephron segments. In rodent models, the thi-
azide-sensitive NCC is consistently upregulated,?> whereas
responses of the NKCC2 and the ENaC vary depending on
the experimental model. In a proteomic study of 1,134 par-
ticipants, SGLT2 inhibitor therapy was associated with up-
regulation of carbonic anhydrase isoforms and urotensin II.
The former may enhance sodium-bicarbonate reabsorption
in proximal and collecting tubules, while the latter can stim-
ulate NKCC2 in the loop of Henle, providing a mechanistic
explanation for the attenuation of natriuresis after several
days of treatment.** Evidence regarding ENaC is inconsist-
ent. In diabetic rats, empagliflozin reduces a- and y-ENaC
expression,*> whereas in normotensive rats treated for 14
days, ENaC remains unchanged while NCC is upregulated,
highlighting model-dependent effects.2>

In addition to their natriuretic effects, SGLT2 inhibitors
may influence overall body sodium distribution, including a
reduction in non-osmotic tissue sodium. A randomized con-
trolled trial (RCT) utilizing 22Na magnetic resonance imaging
(MRI) demonstrated that six weeks of dapagliflozin (10 mg
once daily) reduced skin sodium concentration by approxi-
mately 20 mmol/L in adult patients with type 2 diabetes,
whereas placebo had no effect. Consistently, in a cohort of
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74 patients with heart failure, three months of empagliflo-
zin similarly decreased sodium content in skin and skeletal
muscle. Post hoc analysis of EMPA-KIDNEY confirmed that
SGLT2 inhibitors could modify body sodium storage in skin
and muscle tissues without influencing overall body weight
or fat mass, supporting mobilization of non-osmotic sodium
from the skin-fascia compartment.46

This sodium storage site is located in the skin and subcu-
taneous fascia, which are rich in negatively charged sulfated
glycosaminoglycans.4” High aldosterone states activate the
keratinocyte- and sweat duct-mineralocorticoid receptor/
ENaC pathway, further promoting sodium binding to glycosa-
minoglycans.*® Decompensated cirrhosis, characterized by
persistent RAAS activation and elevated aldosterone levels,
is therefore expected to resemble that observed in heart fail-
ure, thereby contributing to ascites formation. Loop diuretics
primarily remove intravascular and tubular sodium and water
and have limited capacity to mobilize tissue sodium, which
may render them less effective than SGLT2 inhibitors for so-
dium redistribution.4%:50 To date, 23Na MRI data in patients
with cirrhosis and refractory ascites are lacking. Imaging-
based studies evaluating the effects of SGLT2 inhibitors and
loop diuretics in this population represent a notable direction
for future research.

Clinical evidence and safety profile of SGLT2 inhibi-
tors for cirrhotic ascites

Since 2020, clinical evidence with SGLT2 inhibitors in cirrhot-
ic ascites has evolved from single-patient reports and small
case series to feasibility studies and pilot RCTs. The earliest
publications consisted of single-patient case reports and very
small series, including three patients with refractory ascites,
one patient with intractable pleuroascites, and one patient
dependent on ascites-concentrating reinfusion.17:51,52 More
recently, Qin et al. documented complete resolution of pleu-
roascites and sustained natriuresis in another refractory case
treated with empagliflozin.>3 Another case report described
two patients with diabetes mellitus and cirrhosis-related as-
cites who experienced sustained reductions in ascites volume
after three years of SGLT2 inhibitor therapy, without serious
adverse events.>* All patients exhibited remarkable improve-
ment in fluid overload and hyponatremia following treatment
with dapagliflozin or empagliflozin.17.5! In addition, a retro-
spective cohort analysis suggested that exposure to SGLT2
inhibitors was associated with fewer end-stage liver disease
events, hospital readmissions, and paracenteses.>>

Since 2024, several pilot trials have demonstrated that
empagliflozin reduced both ascites volume and the need
for therapeutic paracentesis without the emergence of new
safety concerns.>6-59 The first nationwide real-world analysis,
involving approximately 10,000 adults, found that the use
of SGLT2 inhibitors was associated with 32% fewer severe
hepatic outcomes, 53% fewer episodes of hepatorenal syn-
drome, 46% fewer paracenteses, and a 33% reduction in
hospitalization rates (Table 1).17:51-63 Although these findings
are promising, the majority of existing studies provide only
level III-IV evidence and are constrained by small sample
sizes or retrospective design. This highlights the urgent need
for large, multicenter RCTs stratified by Child-Pugh class and
incorporating longitudinal RAAS profiling and urinary electro-
lyte assessments to establish definitive efficacy and mecha-
nistic insights (Supplementary Table 1).

Across four large-scale RCTs of empagliflozin in patients
with diabetes, heart failure, and chronic kidney disease pub-
lished in The New England Journal of Medicine,*0:64-66 the
incidence rates of urinary tract infection, hypoglycemia, and
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hepatotoxicity were comparable to placebo, whereas the inci-
dence of genital mycotic infections increased modestly (Table
2).40,64-66 The |ow risk of hypoglycemia with SGLT2 inhibitors
suggests that they primarily act by lowering the renal glu-
cose threshold rather than exerting a direct glucose-lowering
effect,57 and non-diabetic participants excrete substantially
less urinary glucose than patients with diabetes.®® Mecha-
nistically, the increased downstream glucose load to the S2/
S3 segments of the proximal tubule elicits a compensatory
increase in SGLT1-mediated transport.6® This renal transport
reserve provides a detailed explanation for the consistently
low rates of hypoglycemia across diabetic individuals and pa-
tients with heart failure or CKD.

Neither randomized trials nor real-world studies have
demonstrated an increased incidence of urinary tract infec-
tions, possibly because enhanced urine flow mitigates the
glucosuria-associated infectious risk.”% In contrast, SGLT2 in-
hibitors are consistently associated with a higher incidence of
genital mycotic infections. In individuals without prior genital
disease, the annual risk is approximately 10.8% in women
and 2.7% in men,’! rates that are similar to those observed
in randomized trials. The most frequent manifestations are
candidal vulvovaginitis in women and balanitis or posthitis in
men, which generally resolve rapidly with standard antifun-
gal therapy or temporary discontinuation of SGLT2 inhibitors.
Given that cirrhosis predominantly affects men, the overall
risk-benefit profile remains promising for the use of SGLT2
inhibitors in this population; nevertheless, genital infection
should be prespecified as an important safety endpoint in
future randomized trials. Importantly, existing large RCTs of
SGLT2 inhibitors included few patients with decompensated
cirrhosis, so complications that are particularly relevant in
this population, such as the risk of spontaneous bacterial
peritonitis, potential alterations in gut microbiota due to glu-
cosuria, and the risk of hepatic encephalopathy, have been
insufficiently characterized. These risks should be prioritized
as key safety endpoints in future trials.

In relation to ammonia metabolism, preclinical studies
have indicated that SGLT2 inhibition could enhance renal am-
monium excretion through NHE3 inhibition and Rhcg upregu-
lation.22 In contrast, the DAPASALT study reported a tran-
sient decline in fractional urea excretion, which subsequently
normalized promptly,”2 indicating that the overall impact of
SGLT2 inhibition on ammonia handling remains unresolved.

Hyponatremia represents a frequent complication of de-
compensated cirrhosis, raising concern that natriuresis in-
duced by SGLT2 inhibition could exacerbate this disturbance.
Nevertheless, data from large-scale randomized trials in heart
failure, supported by post hoc evidence, demonstrated that
SGLT2 inhibitors do not increase the incidence of hypona-
tremia and may improve serum sodium concentrations,”3
with similar findings also reported in cirrhotic cohorts.>® Ac-
cordingly, future randomized trials should prospectively des-
ignate serum sodium as a prespecified safety endpoint and
stratify analyses according to baseline sodium concentra-
tion and Child-Pugh classification to refine the assessment
of risks and benefits associated with SGLT2 inhibition in the
management of cirrhotic ascites.

In hypertensive populations, SGLT2 inhibitors lower blood
pressure by approximately 3-5 mmHg.”4 In decompensated
cirrhosis, baseline blood pressure is often low; therefore,
the risk of symptomatic or orthostatic hypotension should
be carefully evaluated, ideally with ambulatory or wearable
blood pressure monitoring as a safety endpoint in future tri-
a|s_75,76

Finally, the hemodynamic effects of SGLT2 inhibitors on the
hepatic circulation warrant careful consideration. Although
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45 (1.5)

22 (0.7)

8 (0.3)

NR

EMPEROR-Preserved®4

Empagli-
flozin (N
= 2,996)
73 (2.4)
57 (1.9)
67 (2.2)
8 (0.3)

Placebo

(N =1,863)
28 (1.5)

15 (0.8)

12 (0.6)
5(0.3)

EMPEROR-Reduced4?
(N =1,863)

Empagliflo-
27 (1.4)

zin

19 (1.0)
31 (1.7)
6 (0.3)

NR

(N = 2,333)

Placebo
36 (1.5)
41 (1.8)
42 (1.8)
42 (1.8)
NR

EMPA-REG OUTCOMES®¢

4,687,

10 mg & 25 mg)

63 (1.3)

Empagliflozin
Serious urinary tract infection 82 (1.7)

(N
301 (6.4)

301 (6.4)
NR

Table 2. Four large trials of empagliflozin

Serious hypoglycemia
Serious genital infection

Genital infection
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SGLT2 inhibitors have been shown to reduce portal pressure
in animal models of cirrhosis, as well as reduce splanchnic
congestion, potentially via antifibrotic mechanisms,’? direct
clinical data in patients with decompensated cirrhosis are
lacking. There is a theoretical concern that excessive hypo-
volemia could reduce hepatic perfusion in patients with al-
ready compromised effective arterial blood volume. Future
trials must balance the benefits of ascites resolution against
the potential risk of worsening hepatic ischemia or hepato-
renal syndrome, particularly in patients with unstable hemo-
dynamics.

109 (3.3)
135 (4.1)
12 (0.4)

NR

107 (3.2)
13 (0.4)

NR

Future research perspectives

Future research should aim to close mechanistic gaps while
establishing a translational framework that connects molecu-
lar pathways to patient-centered outcomes. Priorities include
quantifying the degree of SGLT2-NHE3 coupling and the
context-dependent contribution of NHE3 phosphorylation,
delineating how SGLT2 inhibition modulates the RAAS and
sympathetic tone, and defining the net impact on proximal
and nephron-wide sodium reabsorption. The application of
23Na MRI to assess sodium and water retention in cirrhosis,
as well as dynamic changes in therapeutic response, repre-
sents a promising approach.

From the perspective of drug development, structural and
genetic data support that SGLT2 functions in the proximal tu-
bule as a complex with its accessory protein MAP17. MAP17
is required for full SGLT2 activity, and loss-of-function vari-
ants in MAP17 can cause familial renal glucosuria despite an
intact SLC5A2 coding sequence, underscoring the functional
importance of this microdomain. Recent cryo-electron mi-
croscopy structures of the human SGLT2-MAP17 complex
bound to clinical inhibitors2! provide a framework to design
microdomain-targeted or allosteric modulators that might
preserve NHE3-mediated natriuresis while inducing less glu-
cosuria. Although such “natriuretic-biased, low-glucosuria”
agents remain purely hypothetical at present.

In parallel, a translational pathway is needed to connect
mechanistic insights with clinical outcomes. The analyti-
cal validity and clinical utility of candidate mechanistic bio-
markers should be established, including urinary chloride
and urinary exosomal phosphorylated NHE3 for treatment
monitoring. An initial clinical step may involve exploratory
studies in patients with refractory ascites and impaired uri-
nary sodium excretion, with fractional excretion of sodium
and neurohumoral markers as primary endpoints.”8 If SGLT2
inhibition exhibits sustained natriuretic efficacy in this con-
text, it would warrant progression to multicenter RCTs with
clinically relevant endpoints, including hospital readmission,
paracentesis frequency, and all-cause mortality. Finally, giv-
en that the natriuretic mechanism of SGLT2 inhibition is likely
to be broadly shared across agents in this class, and that
the domestically developed SGLT2 inhibitor henagliflozin has
already entered clinical studies in heart failure,”® future re-
search should also consider evaluating henagliflozin for the
treatment of ascites in patients with cirrhosis.

NR
155(5.2)
257(8.6)

115 (3.8)
311 (10.4)

NR
NR

NR
NR
NR
163 (8.7)

NR
NR
176 (9.4)

37 (1.6)
NR
115 (4.9)

45 (1.0)
NR
239 (5.1)

Conclusions

SGLT2 inhibitors attenuate proximal tubular sodium reab-
sorption through a proximal microdomain comprising SGLT2,
MAP17, and NHE3. Downstream effects include modulation
of the RAAS and sympathetic nervous system, potentially
redistributing tissue sodium. These mechanisms directly ad-
dress the low distal sodium delivery that underlies diuretic
resistance in cirrhotic ascites. Early clinical observations in-

Serious hyperkalemia
Serious acute kidney injury
Liver injury

Hypotension

NR, not reported.
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dicate promising effects on natriuresis and reductions in as-
cites burden, with a safety profile consistent with experience
from other trials involving SGLT2 inhibitors. Although the
current evidence remains preliminary and limited, a coher-
ent translational pathway from “mechanistic rationality” to
“clinical feasibility” has been initially established, providing
a solid basis for subsequent high-quality clinical validation.
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